Boring mills and milling machines

- Jul 02, 2018-

The dimensions between the piece and the tool bit can be changed about two axes to cut both vertically and horizontally into the internal surface. The cutting tool is usually single point, made of M2 and M3 high-speed steel or P10 and P01 carbide. A tapered hole can also be made by swiveling the head.

Boring machines come in a large variety of sizes and styles. Boring operations on small workpieces can be carried out on a lathe while larger workpieces are machined on boring mills. Workpieces are commonly 1 to 4 metres (3 ft 3 in to 13 ft 1 in) in diameter, but can be as large as 20 m (66 ft). Power requirements can be as much as 200 horsepower (150 kW). Cooling of the bores is done through a hollow passageway through the boring bar where coolant can flow freely. Tungsten-alloy disks are sealed in the bar to counteract vibration and chatter during boring. The control systems can be computer-based, allowing for automation and increased consistency.

Because boring is meant to decrease the product tolerances on pre-existing holes, several design considerations apply. First, large length-to-bore-diameters are not preferred due to cutting tool deflection. Next, through holes are preferred over blind holes (holes that do not traverse the thickness of the work piece). Interrupted internal working surfaces—where the cutting tool and surface have discontinuous contact—are preferably avoided. The boring bar is the protruding arm of the machine that holds the cutting tool(s), and must be very rigid.

Because of the factors just mentioned, deep-hole drilling and deep-hole boring are inherently challenging areas of practice that demand special tooling and techniques. Nevertheless, technologies have been developed that produce deep holes with impressive accuracy. In most cases they involve multiple cutting points, diametrically opposed, whose deflection forces cancel each other out. They also usually involve delivery of cutting fluid pumped under pressure through the tool to orifices near the cutting edges. Gun drilling and cannon boring are classic examples. First developed to make the barrels of firearms and artillery, these machining techniques find wide use today for manufacturing in many industries.

Various fixed cycles for boring are available in CNC controls. These are preprogrammed subroutines that move the tool through successive passes of cut, retract, advance, cut again, retract again, return to the initial position, and so on. These are called using G-codes such as G76, G85, G86, G87, G88, G89; and also by other less common codes specific to particular control builders or machine tool builders.